## Agenda – parametres ou/et conditions

- 1. Exercice au tableau
  - Conditions <u>et / ou</u> paramètres

2. Conditions entre les paramètres

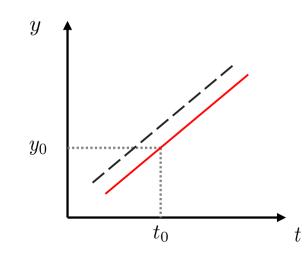
# **Compensation paramétrique avec contraintes**

- Dernière fois
  - Compensation conditionnelle avec paramètres
    - Générale  $f(\ell \mathbf{v}, \mathbf{\mathring{x}} + \delta \mathbf{x}) = 0$
    - Linéarisé  $\mathbf{B}\mathbf{v} \mathbf{A}\delta\mathbf{x} \mathbf{w} = 0$
- Aujourd'hui
  - Avec des conditions entre (quelques) paramètres (plutôt que entre les mesures)

$$g\left(\mathbf{\mathring{x}} + \delta\mathbf{x}\right) = 0$$

- Exemple simple ...
  - Régression linéaire  $y = a + b \cdot t$

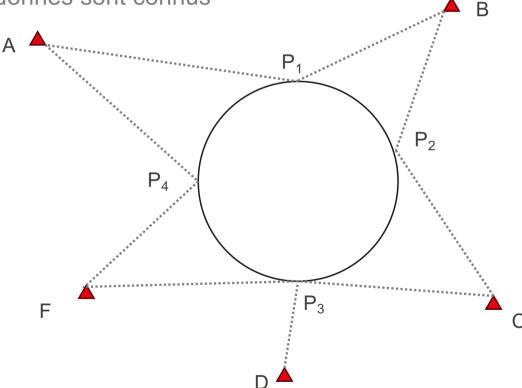
ou on veut imposer  $a_0 = y - b \cdot t_0$ 



# **Compensation paramétrique avec contraintes**

- Exemple plus compliqué
  - quatre points P<sub>1-4</sub> (doit être positionnés) sur un cercle de rayon inconnu

• on mesure de distances (toutes ne sont pas dessinées) depuis les points A,B,C,D,F dont les coordonnés sont connus



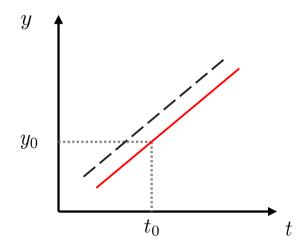
# Méthodes d'estimation

# **Compensation paramétrique avec contraintes**

- D'abord  $y = a + b \cdot t$  avec  $a_0 = y b \cdot t_0$
- Solutions
  - 1. Pseudo-observation avec  $\sigma$  très petit (mais pas zéro)
  - 2. Elimination de paramètre
    - exprimé le contraint  $a_0 = y b \cdot t_0$
    - remettre dans d'autres observations

$$y_i = y_0 + b\left(b_i - t_0\right)$$

- Contraint = condition sans observation
  - cas particulier de  $\mathbf{B}\mathbf{v} \mathbf{A}\delta\mathbf{x} = 0$  avec  $\mathbf{B}_i = 0$ 
    - $(\mathbf{B}\mathbf{Q}_{\ell\ell}\mathbf{B}^T)$   $\longrightarrow$  pseudo-inverse
    - np.linalgo.pinv(B@Qll@B.T)
    - (SVD) décomposition aux valeurs propres
- Générale



## Compensation paramétrique avec contraintes

- Approche générale  $g(\hat{\mathbf{x}}) = 0 \ \& \ f(\hat{\mathbf{x}}, \ \hat{\ell}) = 0$ 
  - contraint dans les modèle paramètrique  $g(\mathring{\mathbf{x}} + \delta \mathbf{x}) = 0$

$$g\left(\mathbf{\mathring{x}} + \delta\mathbf{x}\right) = 0$$

linéarisation

$$\underbrace{g\left(\mathring{\mathbf{x}}\right)}_{\mathbf{t}} + \underbrace{\frac{\partial g(\cdot)}{\partial \mathbf{x}}\Big|_{\mathbf{x} = \mathring{\mathbf{x}}}}_{\mathbf{U}} \delta \mathbf{x} = 0$$

Lagrange

$$\Omega = \mathbf{v}^T \mathbf{P} \mathbf{v} - 2\mathbf{k}_1 \left( \mathbf{B} \mathbf{v} - \mathbf{A} \delta \mathbf{x} - \mathbf{w} \right) - 2\mathbf{k}_2 \left( \mathbf{t} + \mathbf{U} \delta \mathbf{x} \right) \to \min.$$

$$\frac{\partial \Omega}{\partial \mathbf{v}} = \cdots = 0$$

$$\frac{\partial \Omega}{\partial \mathbf{k}_1} = \cdots = 0$$

$$\frac{\partial \Omega}{\partial \mathbf{k}_2} = \cdots = 0$$

$$\frac{\partial \Omega}{\partial \mathbf{k}_2} = \cdots = 0$$

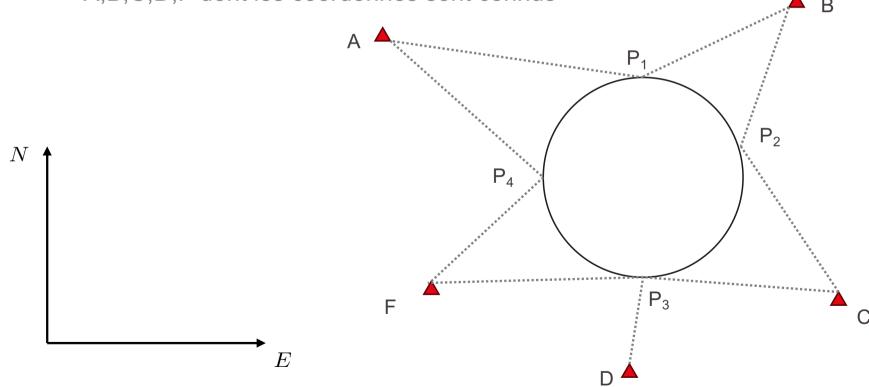
- Solution
  - analytique, p.ex. <u>Förstner & Wrobel, 2016</u>
  - comme compensation combinée, tout en ajoutant une observation fictive  $-\mathbf{t} - \mathbf{v}_t = \mathbf{U}\delta\mathbf{x}$  avec le poids ~100 fois plus large ( $\sigma_t = 10 \times \downarrow$ )

Méthodes d'estimation

# **Compensation paramétrique avec contraintes**

- Exemple plus compliqué
  - quatre points P<sub>1-4</sub> (doit être positionnés) sur un cercle de rayon inconnu

• on mesure de distances (toutes ne sont pas dessinées) depuis les points A,B,C,D,F dont les coordonnés sont connus

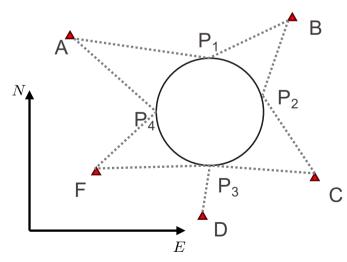


### Compensation paramétrique avec contraintes

Point de départ - modèle paramétrique de mesures

$$\begin{cases} \ell_1 - v_1 &= f_1(E_1, N_1, \cdots, E_4, N_4) \\ \vdots &\vdots &\vdots \\ \ell_n - v_n &= f_n(E_1, N_1, \cdots, E_4, N_4) \end{cases}$$
 ou  $\ell - \mathbf{v} = \mathbf{f}(E_1, N_1, \cdots, E_4, N_4)$ 

- Question
  - Comment peut-on exprimer la condition que 4 points soient situés sur un cercle ?
  - Indice : comment définir un cercle ?





### **Compensation paramétrique avec contraintes**

- Situation avec  $\sqrt{(E_i E_O)^2 + (N_i N_O)^2} R = 0$  i = 1...4
  - 4 équations contiennent de nouveaux paramètres E<sub>O</sub>, N<sub>O</sub>, R
- Options





faire usage de nouvelles (pseudo) mesures « précises »

$$\begin{cases} 0 - v_{P_1} = f_1(E_1, N_1, E_O, N_O, R) = \sqrt{(E_1 - E_O)^2 + (N_1 - N_O)^2} - R \\ \vdots \\ 0 - v_{P_4} = f_1(E_4, N_4, E_O, N_O, R) = \sqrt{(E_4 - E_O)^2 + (N_4 - N_O)^2} - R \end{cases}$$

- Surdétermination ?
  - supposer 11 observations réelles (distances)
  - au crayon ...

